skip to main content


Search for: All records

Creators/Authors contains: "Lucero, Marcos"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Free, publicly-accessible full text available August 2, 2024
  3. Abstract

    Aqueous zinc-ion batteries, in terms of integration with high safety, environmental benignity, and low cost, have attracted much attention for powering electronic devices and storage systems. However, the interface instability issues at the Zn anode caused by detrimental side reactions such as dendrite growth, hydrogen evolution, and metal corrosion at the solid (anode)/liquid (electrolyte) interface impede their practical applications in the fields requiring long-term performance persistence. Despite the rapid progress in suppressing the side reactions at the materials interface, the mechanism of ion storage and dendrite formation in practical aqueous zinc-ion batteries with dual-cation aqueous electrolytes is still unclear. Herein, we design an interface material consisting of forest-like three-dimensional zinc-copper alloy with engineered surfaces to explore the Zn plating/stripping mode in dual-cation electrolytes. The three-dimensional nanostructured surface of zinc-copper alloy is demonstrated to be in favor of effectively regulating the reaction kinetics of Zn plating/stripping processes. The developed interface materials suppress the dendrite growth on the anode surface towards high-performance persistent aqueous zinc-ion batteries in the aqueous electrolytes containing single and dual cations. This work remarkably enhances the fundamental understanding of dual-cation intercalation chemistry in aqueous electrochemical systems and provides a guide for exploring high-performance aqueous zinc-ion batteries and beyond.

     
    more » « less
  4. Using elemental selenium as an electrode, the redox-active Cu 2+ /Cu + ion is reversibly hosted via the sequential conversion reactions of Se → CuSe → Cu 3 Se 2 → Cu 2 Se. The four-electron redox process from Se to Cu 2 Se produces a high initial specific capacity of 1233 mA h g −1 based on the mass of selenium alone or 472 mA h g −1 based on the mass of Cu 2 Se, the fully discharged product. 
    more » « less
  5. Abstract

    The solid–solid electrode–electrolyte interface represents an important component in solid‐state batteries (SSBs), as ionic diffusion, reaction, transformation, and restructuring could all take place. As these processes strongly influence the battery performance, studying the evolution of the solid–solid interfaces, particularly in situ during battery operation, can provide insights to establish the structure–property relationship for SSBs. Synchrotron X‐ray techniques, owing to their unique penetration power and diverse approaches, are suitable to investigate the buried interfaces and examine structural, compositional, and morphological changes. In this review, we will discuss various surface‐sensitive synchrotron‐based scattering, spectroscopy, and imaging methods for the in situ characterization of solid–solid interfaces and how this information can be correlated to the electrochemical properties of SSBs. The goal is to overview the advantages and disadvantages of each technique by highlighting representative examples, so that similar strategies can be applied by battery researchers and beyond to study similar solid‐solid interface systems.

     
    more » « less
  6. Abstract

    Dual‐ion batteries that use anions and cations as charge carriers represent a promising energy‐storage technology. However, an uncharted area is to explore transition metals as electrodes to host carbonate in conversion reactions. Here we report the reversible conversion reaction from copper to Cu2CO3(OH)2, where the copper electrode comprising K2CO3and KOH solid is self‐sufficient with anion‐charge carriers. This electrode dissociates and associates K+ions during battery charge and discharge. The copper active mass and the anion‐bearing cathode exhibit a reversible capacity of 664 mAh g−1and 299 mAh g−1, respectively, and relatively stable cycling in a saturated mixture electrolyte of K2CO3and KOH. The results open an avenue to use carbonate as a charge carrier for batteries to serve for the consumption and storage of CO2.

     
    more » « less
  7. Abstract

    Dual‐ion batteries that use anions and cations as charge carriers represent a promising energy‐storage technology. However, an uncharted area is to explore transition metals as electrodes to host carbonate in conversion reactions. Here we report the reversible conversion reaction from copper to Cu2CO3(OH)2, where the copper electrode comprising K2CO3and KOH solid is self‐sufficient with anion‐charge carriers. This electrode dissociates and associates K+ions during battery charge and discharge. The copper active mass and the anion‐bearing cathode exhibit a reversible capacity of 664 mAh g−1and 299 mAh g−1, respectively, and relatively stable cycling in a saturated mixture electrolyte of K2CO3and KOH. The results open an avenue to use carbonate as a charge carrier for batteries to serve for the consumption and storage of CO2.

     
    more » « less
  8. Recently, considerable attention has been paid to the stabilization of atomic platinum (Pt) catalysts on desirable supports in order to reduce Pt consumption, improve the catalyst stability, and thereafter enhance the catalyst performance in renewable energy devices such as fuel cells and zinc-air batteries (ZABs). Herein, we rationally designed a novel strategy to stabilize atomic Pt catalysts in alloyed platinum cobalt (PtCo) nanosheets with trapped interstitial fluorine (SA-PtCoF) for ZABs. The trapped interstitial F atoms in the PtCoF matrix induce lattice distortion resulting in weakening of the Pt–Co bond, which is the driving force to form atomic Pt. As a result, the onset potentials of SA-PtCoF are 0.95 V and 1.50 V for the oxygen reduction and evolution reactions (ORR and OER), respectively, superior to commercial Pt/C@RuO 2 . When used in ZABs, the designed SA-PtCoF can afford a peak power density of 125 mW cm −2 with a specific capacity of 808 mA h g Zn −1 and excellent cyclability over 240 h, surpassing the state-of-the-art catalysts. 
    more » « less